CLASS I VERTICAL HYDROCARBON SEPARATOR BY COALESCENCE WITH AUTOMATIC CLOSURE DEVICE (ACD) AND OIL FILTER

REF: CVC-SH-FO; CVC-SH-F; CVC-SH-O

Application:

- Mineral oil, grease and hydrocarbon separation from water (gravity and coalescing separation) by density difference. This unit does not separate emulsified oil.

NOTE: For organic oil and grease removal (from vegetables and animals), please refer to grease separators (chapter n ${ }^{\circ} 1$).

Characteristics:

- Salher brand, model CVC-SH-FO (with filter and self-locking system); CVC-SHF (with filter). Class I, outlet oil concentration smaller than 5 ppm.
- Manufactured by Salher, model CVC-SH-O (with self-locking system). Class II, outlet oil concentration smaller than 100 ppm .
- Designed according to DIN 1999 and UNE 858 Standards.
- Manufactured in Glass Fiber Reinforced Polyester (GFRP) with orthophthalic resins.
- Oil and hydrocarbon separation and solids settling chamber.
- Separated oil and hydrocarbon on the surface of water.
- Oil filter and automatic closure device composed of a float and closing system.
- Oil removal through upper manhole.
- PVC inlet and outlet pipes. Outlet in the manhole to install a ventilation pipe.
- Optional: oil and hydrocarbon detection alarm.

FLOW [l/s]	CAPACITY [liters]	$\boldsymbol{\varnothing}$ $[\mathbf{m m}]$	\mathbf{H} $[\mathbf{m m}]$	$\boldsymbol{\varnothing}$ PIPE $[\mathbf{m m}]$	$\boldsymbol{\varnothing}$ MANHOLE $[\mathbf{m m}]$
$\mathbf{0 , 5}$	193	620	890	110	400
$\mathbf{1}$	380	750	980	110	400
$\mathbf{2}$	700	1.000	990	110	500
$\mathbf{3}$	1.000	1.000	1.360	110	500
$\mathbf{4}$	1.350	1.200	1.320	125	500
$\mathbf{5}$	1.800	1.400	1.310	125	500
$\mathbf{6}$	2.160	1.400	1.540	125	500
$\mathbf{7}$	2.520	1.400	1.770	160	500
$\mathbf{8}$	2.880	1.700	1.350	160	620
$\mathbf{9}$	3.240	1.700	1.600	160	620
$\mathbf{1 0}$	3.600	1.700	1.760	160	620

[^0]
[^0]: FLOW (L/S) CAPACITY (L) DIMENSIONS (MM). FOR LARGER FLOWS, PLEASE CONSULT US

