T2-05

Micro Diaphragm Pumps (air/gas)

Up to 800 mLPM Free Flow

Parker's T2-05 13.5 mm wide micro diaphragm pump is designed to fit where other pumps cannot due to its small, compact package size. The T2-05 flow path is optimized to deliver high flow with high efficiency resulting in extended battery life. The pump's low power, small size, and light weight play a critical role in portable gas detection and medical applications.

Markets

- Safety
- Patient Therapy
- · Patient Monitoring

Applications

- Portable Gas Detection
- Gas Sampling
- Medical Instruments
- Trace Detection
- Sidestream CO₂
- Negative Pressure Wound Therapy

Features

- The valve design has been optimized to provide the highest flow rates available with the lowest current draw, allowing for longer battery life and smaller instrument size.
- The T2-05 model pump life ranges up to 10,000 rated hours depending on motor (HE, LI and IC) options
- The pump fits into the extremely tight spaces demanded of today's handheld instruments, such as portable gas detectors and portable negative pressure wound therapy devices for patient mobility. The lightweight design minimizes instrument weight.
- RoHS compliant. 🚮

Product Specifications*

Physical Properties

Operating Environment¹:

-4 to 122°F (-20 to 50°C)

Storage Environment

-4 to 122°F (-20 to 50°C)

Media:

Air, Argon, Helium, Nitrogen, Oxygen, and other non-reacting gases

Humidity:

Most non-condensing gases 5-95% Relative Humidity

Pump Assembly Rated Life³:

Coreless Motor-Pump (HE): Up to 10,000 hours Coreless Motor-Pump (LI): Up to 6,000 hours PMDC Iron Core-Pump (IC): Up to 1,500 hours

Weight:

0.5 oz (14 g) HE and LI 0.4 oz (11 g) IC

Electrical

Motor Type (DC):

High Efficiency Coreless Brush (HE) Low Inductance Coreless Brush (LI) PMDC Iron Core Brush (IC)

Nominal Motor Voltages (DC)4:

3.3 VDC

Electrical Termination:

Coreless Motor-Pump (HE): Up to 10,000 hours Coreless Motor-Pump (LI): Up to 6,000 hours PMDC Iron Core-Pump (IC): Up to 1,500 hours

Inductance⁶:

HE: 0.28 mH maximum @ 1kHz/50mV LI: 0.05 mH maximum @ 1kHz/50mV IC: 4.07 mH maximum @ 1kHz/50 mV

Wetted Materials

Valves: EPDM

Pump Head: ABS

Pneumatic

Head Configuration: Single

Maximum Flow:

HE, LI: 800 smlpm, IC: 700 smlpm

Maximum Intermittent Pressure⁷:

6.2 psi (430 mbar)

Maximum Continuous Pressure:

2.0 psi (138 mbar)

Maximum Intermittent Vacuum⁷:

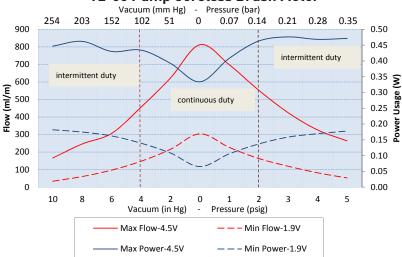
10.8 in Hg (274 mm Hg)

Maximum Continuous Vacuum:

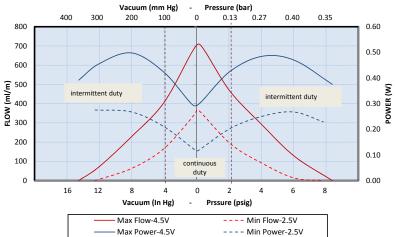
4.1 in Hg (104 mm Hg)

Filtration:

40 micron recommended


Efficiency at Free Flow8:

LPM/Watt: 4.66 @ 1.9 VDC (P/N T5-1HE-03-1EEB) LPM/Watt: 4.08 @ 1.9 VDC (P/N T5-1LI-03-1EEB) LPM/Watt: 3.12 @1.9 VDC (P/N T5-1IC-03-1EEP)



Performance Specifications

T2-05 PMDC Iron Core Brush Motor

The above graphs represent examples of performance for the pumps series handling air at 800 feet (244M) above sea level at 75° F (24° C). Performance will vary depending on barometric pressure and media temperature. Curves are representative of standard pump configurations. Pump configurations could be customized for higher or lower flows, depending on specific customer requirements.

Please contact Parker Precision Fluidics Applications Engineering for other considerations

Sizing and Selection

T2-05 Series

Coreless Brush Motor Coreless Brush Motor (High Efficiency)

(Low Inductance)

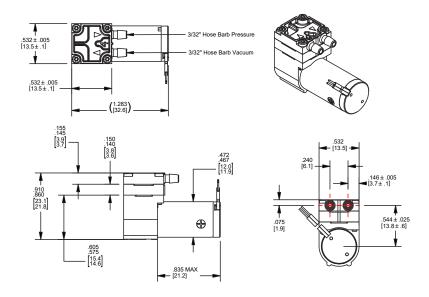
PMDC Iron Core Motor (Iron Core)

B		
Model	HE	LI

Inductance ⁶	Better	Best	N/A
Efficiency at Free Flow ⁸	Best	Best	Better
Life ³	Best	Better	Good
Cost	Good	Better	Best

Mounting Guidelines:

Parker recommends using a nylon cable tie with a length of at least 4" (100 mm).

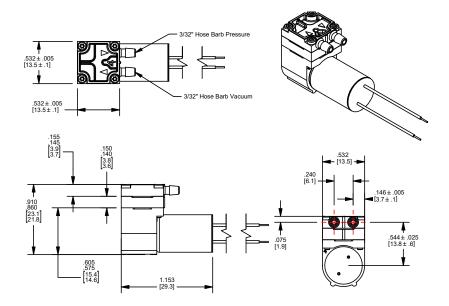

Port Connections:

HE & LI: 3/32" ID tubing

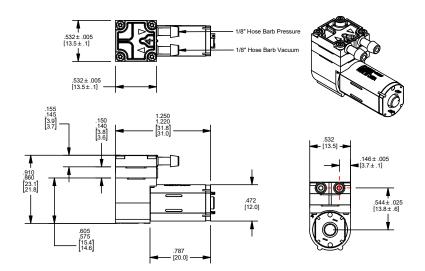
IC: 1/8" ID tubing

Mechanical Integration Dimensions

Coreless Brush/HE Version



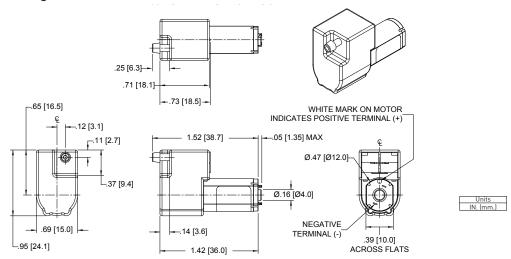
Mechanical Integration Dimensions


Coreless Brush/LI Version

Units IN. (mm.)

Mechanical Integration Dimensions

PMDC Iron Core/IC Version


Units IN. (mm.)

Mechanical Integration

PMDC Iron Core/IC Version

Improved Sound Configuration*

 $[\]hbox{*The noise mitigation outlet cover is available for vacuum configuration only, with the PMDC Iron Core brush motor.}$

Electrical Integration and Motor Control

Coreless Brush Motor (HE. LI)

2 Wire	Red (+), Black (-)
Wire specification	28 AWG 5.7" (145 mm) PVC Wire Leads

PMDC Iron Core Brush Motor (IC)

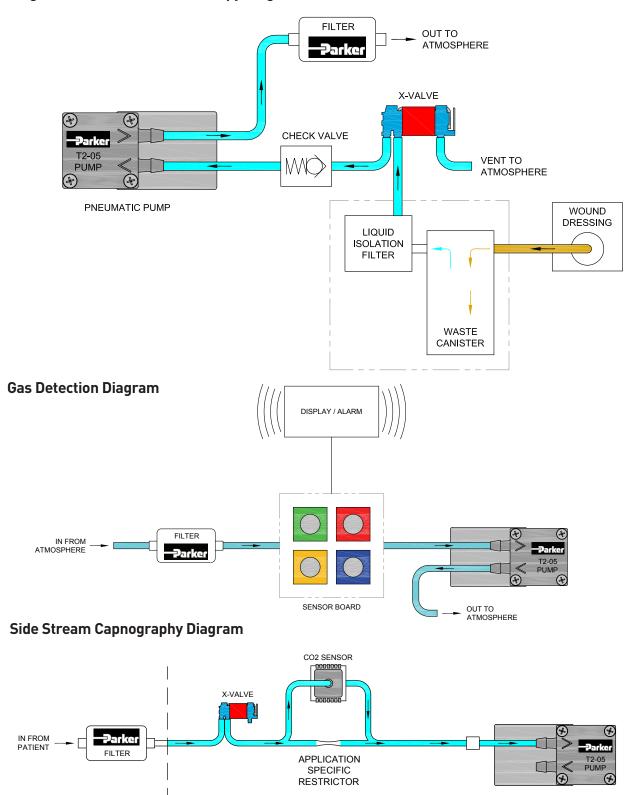
2 Wire	Red (+), Black (-)
Wire specification	26 AWG 6.5" (165 mm) PVC Wire Leads

Key Things to Remember

Contact Parker Engineering for other connection requirements.

Pump life is highly dependent on operating conditions. It is not recommended to run the pump continuously, 100% duty cycle, at higher than 2 psig.

The pump flow and pressure can be controlled by adjusting the input voltage from zero to maximum rated voltage.


The pump is not a pressure holding device. An external check valve is recommended, if there is a pressure holding requirement.

Pump orientation does not affect performance or life.

Typical Flow Diagram

Negative Pressure Wound Therapy Diagram

T2-05

Chemical Compatibility Chart*

	Chemical Compatibility of Wetted Path Materials			
Chemical	EPDM	ABS	РВТ	
Air	1	1	1	
Ozone (1000 ppm)	4	2	1	
Oxygen	1	1	1	
Ethylene (Ethene)	4	1	1	
Acetylene	1	2	2	
Propane	4	2	2	
Methane	4	4	2	
Nitrogen	1	1	1	
Carbon Dioxide	2	2	1	
Halothane (Up to 5%)	4	1	1	

^{*}The above is an Abbreviated Chemical Compatibility Chart. Please consult factory for details.

Compatibility Legend

- 1. EXCELLENT

 Minimal or no effect
- 2. GOOD
 Possible swelling and/or loss of physical properties
- 3. DOUBTFUL
 Moderate or severe swelling and loss of physical
 properties
- 4. NOT RECOMMENDED
 Severe effect and should
 not be considered

Note: Consult factory for other gases.

Ordering Information

Configuration	Vacuum: L	PM @ Load	Free Flow	Pressure: LI	PM @ Load	Motor Type
	8 in Hg	4 in Hg	0	2 psig	4 psig	
	203 mm Hg	102 mm Hg	U	134 mbar	276 mbar	
T5-1HE-03-1EEB	0.2	0.5	0.8	0.6	0.3	Coreless Brush
T5-1LI-03-1EEB-1	0.2	0.5	0.8	0.6	0.3	Coreless Brush
T5-1IC-03-1EEP	0.2	0.5	0.7	0.5	0.3	PMDC
T5-VBIC-03-1EEP	0.2	0.5	0.7			PMDC
T5-1ICW-03-1EEP	0.2	0.5	0.7	0.5	0.3	PMDC

ORDER

8

Ordering Information

Please refer to sizing and selection chart for identifying which one will fit your application

Please click on the Order On-line button below (or go to www.parker.com/precisionfluidics/t5) to configure your T2-05 Micro Diaphragm Pump.

Serviceable – PPF products are designed for use through the rated life and Parker does not sell replacement parts, nor is it recommended to service these in the field

Note: In addition to Parker's innovative and flexible pump designs, we offer applications engineering expertise to our customers in order to configure and recommend the optimal pump for the application. Contact Parker Applications Engineering to discuss and configure alternate pump configurations to meet your specific application requirements. Providing information on the following requirements will assist us in developing an optimal solution for your application:

- Noise
- Operating Pressure / Vacuum
- Power Consumption
- Life Requirement

- Size
- Motor Control
- Media
- Voltage

Parker Hannifin Precision Fluidics Division reserves the right to make changes. Drawings are for reference only.

Appendix A

All performance data is typical based on standard conditions: 70°F and 14.7 psia (21°C and 1 bar).

- 1. Duty Dependent. For operation above 122°F (50°C) consult factory
- 2. Noise is dependent on the configuration and operation of the pump in the application. Parker has the ability to tailor the pump configuration when noise is a critical criterion in the effort to meet the performance requirements of the application. Noise level is tested to Parker protocol P-105.
- 3. Life rating can vary depending on application and operating conditions.
- 4. Custom motor options available. Custom motors may require a significant application potential. The standard motors can be configured with a special winding to meet a particular operation point at a specified voltage
- 5. Current range is dependent on motor type, voltage, pressure/vacuum and flow requirement. Lower levels possible depending on application.
- 6. Inductance is an indicator of induced voltage with change in current and it is a key parameter to enable customers' low energy intrinsic safety systems
- 7. Maximum intermittent pressure/vacuum data is a pump capability guideline for applications that go beyond the maximum continuous levels for short periods of time. Please consult customer specific requirements with the factory or Applications Engineering.
- 8. Pump efficiency is a measure of the flow rate generated per unit of power consumed. Efficiency may change dependent on application and operating condition at free flow.

© 2020 Parker Hannifin Corporation PPF MDP - 002/US June 2020

Parker Hannifin Corporation

Precision Fluidics Division
26 Clinton Dr., Unit 103
Hollis, NH 03049
phone: +1 603 595 1500
email: ppfinfo@parker.com
www.parker.com/precisionfluidics

